Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.962
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Curr Pharm Biotechnol ; 25(4): 499-509, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572608

RESUMEN

Background: Salpingitis obstructive infertility (SOI) refers to infertility caused by abnormal conditions such as tubal adhesion and blockage caused by acute and chronic salpingitis. SOI has a serious impact on women's physical and mental health and family harmony, and it is a clinical problem that needs to be solved urgently.

Objective: The purpose of the present study was to explore the potential pharmacological mechanisms of the Yinjia tablets (Yin Jia Pian, YJP) on tubal inflammation.

Methods: Networks of YJP-associated targets and tubal inflammation-related genes were constructed through the STRING database. Potential targets and pathway enrichment analysis related to the therapeutic efficacy of YJP were identified using Cytoscape and Database for Annotation, Visualization, and Integrated Discovery (metascape). E. coli was used to establish a rat model of tubal inflammation and to validate the predictions of network pharmacology and the therapeutic efficacy of YJP. H&E staining was used to observe the pathological changes in fallopian tubes. TEM observation of the ultrastructure of the fallopian tubes. ELISA was used to detect the changes of IL-6 and TNF-α in fallopian tubes. Immunohistochemistry was used to detect the expression of ESR1. The changes of Bcl-2, ERK1/2, p-ERK1/2, MEK, p-MEK, EGFR, and p-EGFR were detected by western blot.

Results: Through database analysis, it was found that YJP shared 105 identical targets with the disease. Network pharmacology analysis showed that IL-6, TNF, and EGFR belong to the top 5 core proteins associated with salpingitis, and EGFR/MEK/ERK may be the main pathway involved. The E. coli-induced disease rat model of fallopian tube tissue showed damage, mitochondrial disruption, and increased levels of the inflammatory factors IL-6 and TNF-α. Tubal inflammatory infertility rats have increased expression of Bcl-2, p-ERK1/2, p-MEK, and p-EGFR, and decreased expression of ESR1. In vivo, experiments showed that YJP improved damage of tissue, inhibited shedding of tubal cilia, and suppressed the inflammatory response of the body. Furthermore, YJP inhibited EGFR/MEK/ERK signaling, inhibited the apoptotic protein Bcl-2, and upregulated ESR1.

Conclusion: This study revealed that YJP Reducing tubal inflammation and promoting tissue repair may be associated with inhibition of the EGFR/MEK/ERK signaling pathway.

.


Asunto(s)
Medicamentos Herbarios Chinos , Infertilidad , Salpingitis , Humanos , Femenino , Ratas , Animales , Salpingitis/complicaciones , Salpingitis/metabolismo , Salpingitis/patología , Sistema de Señalización de MAP Quinasas , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Escherichia coli/metabolismo , Farmacología en Red , Infertilidad/complicaciones , Transducción de Señal , Inflamación/tratamiento farmacológico , Receptores ErbB/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 49(3): 744-753, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621878

RESUMEN

This study observed the protective effect of resveratrol(Res) on ovarian function in poor ovarian response(POR) mice by regulating the Hippo signaling pathway and explored the potential mechanism of Res in inhibiting ovarian cell apoptosis. Female mice with regular estrous cycles were randomly divided into a blank group, a model group, and low-and high-dose Res groups(20 and 40 mg·kg~(-1)), with 20 mice in each group. The blank group received an equal volume of 0.9% saline solution by gavage, while the model group and Res groups received suspension of glycosides of Triptergium wilfordii(GTW) at 50 mg·kg~(-1) by gavage for two weeks to induce the model. After modeling, the low-and high-dose Res groups were continuously treated with drugs by gavage for two weeks, while the blank group and the model group received an equal volume of 0.9% saline solution by gavage. Ovulation was induced in all groups on the day following the end of treatment. Finally, 12 female mice were randomly selected from each group, and the remaining eight female mice were co-housed with male mice at a ratio of 1∶1. Changes in the estrous cycle of mice were observed using vaginal cytology smears. The number of ovulated eggs, ovarian wet weight, ovarian index, and pregnancy rate of mice were measured. The le-vels of anti-Mullerian hormone(AMH), follicle-stimulating hormone(FSH), estradiol(E_2), and luteinizing hormone(LH) in serum were determined using enzyme-linked immunosorbent assay(ELISA). Ovarian tissue morphology and ovarian cell apoptosis were observed using hematoxylin-eosin(HE) staining and terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) staining, respectively. The protein expression levels of yes-associated protein(YAP) 1 and transcriptional coactivator with PDZ-binding motif(TAZ) were detected by immunohistochemistry(IHC), while the changes in protein expression levels of mammalian sterile 20-like kinase(MST) 1/2, large tumor suppressor(LATS) 1/2, YAP1, TAZ, B-cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) were determined by Western blot. The results showed that compared with the blank group, the model group had an increased rate of estrous cycle disruption in mice, a decreased number of normally developing ovarian follicles, an increased number of blocked ovarian follicles, increased ovarian granulosa cell apoptosis, decreased ovulation, reduced ovarian wet weight and ovarian index, increased serum FSH and LH levels, decreased AMH and E_2 levels, decreased protein expression levels of YAP1 and TAZ in ovarian tissues, increased relative expression levels of MST1/2, LATS1/2, and Bax proteins, and decreased relative expression levels of YAP1, TAZ, and Bcl-2 proteins. Additionally, the number of embryos per litter significantly decreased after co-housing. Compared with the model group, the low-and high-dose Res groups exhibited reduced estrous cycle disruption rates in mice, varying degrees of improvement in the number and morphology of ovarian follicles, reduced numbers of blocked ovarian follicles, improved ovarian granulosa cell apoptosis, increased ovulation, elevated ovarian wet weight and ovarian index, decreased serum FSH and LH levels, increased AMH and E_2 levels, elevated protein expression levels of YAP1 and TAZ in ovarian tissues, decreased relative expression levels of MST1/2, LATS1/2, and Bax proteins, and increased relative expression levels of YAP1, TAZ, and Bcl-2 proteins. Furthermore, the number of embryos per litter increased to varying degrees after co-housing. In conclusion, Res effectively inhibits ovarian cell apoptosis in mice and improves ovarian responsiveness. Its mechanism may be related to the regulation of key molecules in the Hippo pathway.


Asunto(s)
Vía de Señalización Hippo , Ovario , Embarazo , Ratones , Femenino , Masculino , Animales , Proteína X Asociada a bcl-2/metabolismo , Resveratrol/farmacología , Solución Salina/metabolismo , Solución Salina/farmacología , Hormona Folículo Estimulante/metabolismo , Hormona Folículo Estimulante/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Mamíferos/metabolismo
3.
BMC Complement Med Ther ; 24(1): 150, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580999

RESUMEN

BACKGROUND: Smilax china L. (SCL) is a traditional herbal medicine for the potential treatment of intrauterine adhesion (IUA). However, the mechanisms of action have not yet been determined. In this study, we explored the effects and mechanisms of SCL in IUA by network pharmacology, molecular docking and molecular biology experiments. METHODS: Active ingredients and targets of SCL were acquired from TCMSP and SwissTargetPrediction. IUA-related targets were collected from the GeneCards, DisGeNET, OMIM and TTD databases. A protein‒protein interaction (PPI) network was constructed by Cytoscape 3.9.1 and analysed with CytoHubba and CytoNCA to identify the core targets. The DAVID tool was used for GO and KEGG enrichment analyses. Furthermore, molecular docking was employed to assess the interaction between the compounds and key targets. Finally, the mechanisms and targets of SCL in IUA were verified by cellular experiments and western blot. RESULTS: A total of 196 targets of SCL were identified, among which 93 were related to IUA. Topological and KEGG analyses results identified 15 core targets that were involved in multiple pathways, such as inflammation, apoptosis, and PI3K/AKT signalling pathways. Molecular docking results showed that the active compounds had good binding to the core targets. In vitro experiments showed that astilbin (AST), a major component of SCL, significantly reduced TGF-ß-induced overexpression of fibronectin (FN), activation of the PI3K/AKT signalling pathway and the expression of downstream factors (NF-κB and BCL2) in human endometrial stromal cells, suggesting that AST ameliorates IUA by mediating the PI3K/AKT/NF-κB and BCL2 proteins. CONCLUSIONS: AST, a major component of SCL, may be a potential therapeutic agent for IUA. Moreover, its mechanism is strongly associated with regulation of the PI3K/AKT signalling pathway and the downstream NF-κB and BCL2 proteins. This study will provide new strategies that utilize AST for the treatment of IUA.


Asunto(s)
FN-kappa B , Smilax , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-bcl-2 , China
4.
Med Oncol ; 41(5): 106, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575697

RESUMEN

Recent advances in nanotechnology have offered novel ways to combat cancer. By utilizing the reducing capabilities of Lactobacillus acidophilus, silver nanoparticles (AgNPs) are synthesized. The anti-cancer properties of AgNPs have been demonstrated in previous studies against several cancer cell lines; it has been hypothesized that these compounds might inhibit AMPK/mTOR signalling and BCL-2 expression. Consequently, the current research used both in vitro and in silico approaches to study whether Lactobacillus acidophilus AgNPs could inhibit cell proliferation autophagy and promote apoptosis in HepG2 cells. The isolated strain was identified as Lactobacillus acidophilus strain RBIM based on 16 s rRNA gene analysis. Based on our research findings, it has been observed that this particular strain can generate increased quantities of AgNPs when subjected to optimal growing conditions. The presence of silanols, carboxylates, phosphonates, and siloxanes on the surface of AgNPs was confirmed using FTIR analysis. AgNPs were configured using UV-visible spectroscopy at 425 nm. In contrast, it was observed that apoptotic cells exhibited orange-coloured bodies due to cellular shrinkage and blebbing initiated by AgNP treatment, compared to non-apoptotic cells. It is worth mentioning that AgNPs exhibited remarkable selectivity in inducing cell death, specifically in HepG2 cells, unlike normal WI-38 cells. The half-maximum inhibitory concentration (IC50) values for HepG2 and WI-38 cells were 4.217 µg/ml and 154.1 µg/ml, respectively. AgNPs induce an upregulation in the synthesis of inflammation-associated cytokines, including (TNF-α and IL-33), within HepG2 cells. AgNPs co-treatment led to higher glutathione levels and activating pro-autophagic genes such as AMPK.Additionally, it resulted in the suppression of mTOR, MMP-9, BCL-2, and α-SMA gene expression. The docking experiments suggest that the binding of AgNPs to the active site of the AMPK enzyme leads to inhibiting its activity. The inhibition of AMPK ultimately results in the suppression of the mechanistic mTOR and triggers apoptosis in HepG2 cells. In conclusion, the results of our study indicate that the utilization of AgNPs may represent a viable strategy for the eradication of liver cancerous cells through the activation of apoptosis and the enhancement of immune system reactions.


Asunto(s)
Neoplasias Hepáticas , Nanopartículas del Metal , Humanos , Plata/farmacología , Plata/química , Proteínas Quinasas Activadas por AMP , Nanopartículas del Metal/química , Metaloproteinasa 9 de la Matriz , Apoptosis , Neoplasias Hepáticas/tratamiento farmacológico , Serina-Treonina Quinasas TOR , Proteínas Proto-Oncogénicas c-bcl-2 , Extractos Vegetales/química
5.
J Ethnopharmacol ; 328: 118027, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38537844

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zishen Qingre Lishi Huayu recipe (ZQLHR) is a herbal recipe created on the basis on the theory of traditional Chinese medicine and clinical practice, and is mainly used in the treatment of polycystic ovary syndrome (PCOS). However, the underlying mechanism for this fact has not been clearly elucidated. AIM OF THE STUDY: To verify whether ZQLHR regulates granulosa cells (GCs) proliferation and apoptosis through the Krüppel-like factor 4 (KLF4) - CCATT enhancer-binding proteinß (C/EBPß) pathway, and to provide in vitro molecular mechanism supporting for the effects of ZQLHR to enhance follicular development and treat patients with PCOS. MATERIALS AND METHODS: Based on previous experiments, we performed the following experiments. Firstly, we treated KGN cells (a steroidogenic human granulosa-like tumor cell line) for 48 h using different concentrations of ZQLHR in order to observe apoptosis in each group. Secondly, the mRNA and protein expression levels of KLF4 and C/EBPß in KGN cells after administrated with ZQLHR were examined by quantitative real-time PCR(q-PCR) and Western blot assay. Thirdly, after knocking down KLF4 and C/EBPß using siRNAs, the relationship between KLF4 and C/EBPß in KGN cells was detected. Further, cell counting kit-8 assay, colony formation assay and flow cytometry were used to verify whether ZQLHR promotes proliferation and facilitates apoptosis in KGN cells through the KLF4-C/EBPß pathway. Finally, q-PCR and Western blot were used to test whether ZQLHR mediated proliferation and apoptosis-related factors such as B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (BAX), proliferating cell nuclear antigen (PCNA) and cleaved caspase-3 to affect the proliferation and apoptosis of KGN cells through the KLF4-C/EBPß pathway. CONCLUSIONS: ZQLHR, containing 0.2% by volume, administered to KGN cells resulted in the lowest rate of apoptosis. The expression levels of KLF4 and C/EBPß were increased in KGN cells following ZQLHR treatment. Additionally, ZQLHR promoted proliferation and inhibited apoptosis of KGN cells by modulating proliferation and apoptosis-related factors via the KLF4-C/EBPß pathway. Furthermore, we confirmed that KLF4 and C/EBPß regulate each other in KGN cells. These findings indicate that ZQLHR enhances the proliferation of GCs and suppresses their apoptosis, which constitutes a therapeutic mechanism for treating patients with PCOS.


Asunto(s)
MicroARNs , Síndrome del Ovario Poliquístico , Femenino , Humanos , Síndrome del Ovario Poliquístico/metabolismo , Factor 4 Similar a Kruppel , Apoptosis , Células de la Granulosa , Proliferación Celular , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , MicroARNs/genética
6.
Biomed Pharmacother ; 173: 116346, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428312

RESUMEN

BACKGROUND: This study aimed to investigate the effects of the combination of Epimedii Folium (EF) and Ligustri Lucidi Fructus (LLF) on regulating apoptosis and autophagy in senile osteoporosis (SOP) rats. METHODS: Firstly, we identified the components in the decoction and drug-containing serum of EL (EF&LLF) by Ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Secondly, SOP rats were treated with EF, LLF, EL and caltrate to evaluate the advantages of EL. Finally, H2O2-, chloroquine-, and MHY1485-induced osteoblasts were treated with different doses of EL to reveal the molecular mechanism of EL. We detected bone microstructure, oxidative stress levels, ALP activity and the expressions of Bax, Bcl-2, caspase3, P53, Beclin-1, p-PI3K, PI3K, p-Akt, Akt, p-mTOR, mTOR, and LC3 in vivo and in vitro. RESULTS: 36 compounds in EL decoction and 23 in EL-containing serum were identified, including flavonoids, iridoid terpenoids, phenylethanoid glycosides, polyols and triterpenoids. EL could inhibit apoptosis activity and increase ALP activity. In SOP rats and chloroquine-inhibited osteoblasts, EL could improve bone tissue microstructure and osteoblasts functions by upregulating Bcl-2, Beclin1, and LC3-II/LC3-I, while downregulating p53 in all treatment groups. In H2O2-induced osteoblasts, EL could upregulate the protein and mRNA expressions of Bcl-2 while downregulate LC3-II/LC3-I, p53 and Beclin1. Besides, EL was able to down-regulate PI3K/AKT/mTOR pathway which activated in SOP rats and MHY1485-induced osteoblasts. CONCLUSIONS: These findings demonstrate that EL with bone protective effects on SOP rats by regulating autophagy and apoptosis via PI3K/Akt/mTOR signaling pathway, which might be an alternative medicine for the treatment of SOP.


Asunto(s)
Medicamentos Herbarios Chinos , Ligustrum , Osteoporosis , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ligustrum/química , Ligustrum/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Beclina-1/metabolismo , Peróxido de Hidrógeno/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Osteoporosis/tratamiento farmacológico , Osteoblastos , Apoptosis , Autofagia , Cloroquina/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
7.
J Ethnopharmacol ; 326: 117965, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38423410

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Scrophulariae Radix (Xuanshen [XS]) has been used for several years to treat hyperthyroidism. However, its effective substances and pharmacological mechanisms in the treatment of hyperthyroidism and thyroid hormone-induced liver and kidney injuries have not yet been elucidated. AIM OF THE STUDY: This study aimed to explore the pharmacological material basis and potential mechanism of XS therapy for hyperthyroidism and thyroid hormone-induced liver and kidney injuries based on network pharmacology prediction and experimental validation. MATERIALS AND METHODS: Based on 31 in vivo XS compounds identified using ultra-performance liquid chromatography tandem quadruple exactive orbitrap high-resolution accurate-mass spectrometry (UPLC-QE-HRMS), a network pharmacology approach was used for mechanism prediction. Systematic networks were constructed to identify the potential molecular targets, biological processes (BP), and signaling pathways. A component-target-pathway network was established. Mice were administered levothyroxine sodium through gavage for 30 d and then treated with different doses of XS extract with or without propylthiouracil (PTU) for 30 d. Blood, liver, and kidney samples were analyzed using an enzyme-linked immunosorbent assay (ELISA) and western blotting. RESULTS: A total of 31 prototypes, 60 Phase I metabolites, and 23 Phase II metabolites were tentatively identified in the plasma of rats following the oral administration of XS extract. Ninety-six potential common targets between the 31 in vivo compounds and the diseases were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that Bcl-2, BAD, JNK, p38, and ERK1/2 were the top targets. XS extract with or without PTU had the following effects: inhibition of T3/T4/fT3/fT4 caused by levothyroxine; increase of TSH levels in serum; restoration of thyroid structure; improvement of liver and kidney structure and function by elevating the activities of anti-oxidant enzymes catalase (CAT),superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px); activation anti-apoptotic proteins Bcl-2; inhibition the apoptotic protein p-BAD; downregulation inflammation-related proteins p-ERK1/2, p-JNK, and p-p38; and inhibition of the aggregation of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6, as well as immune cells in the liver. CONCLUSION: XS can be used to treat hyperthyroidism and liver and kidney injuries caused by thyroid hormones through its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. In addition, serum pharmacochemical analysis revealed that five active compounds, namely 4-methylcatechol, sugiol, eugenol, acetovanillone, and oleic acid, have diverse metabolic pathways in vivo and exhibit potential as effective therapeutic agents.


Asunto(s)
Medicamentos Herbarios Chinos , Hipertiroidismo , Ratas , Ratones , Animales , Antioxidantes/farmacología , Farmacología en Red , Hígado , Hormonas Tiroideas/metabolismo , Hipertiroidismo/inducido químicamente , Hipertiroidismo/tratamiento farmacológico , Tiroxina , Riñón/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Antiinflamatorios/farmacología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/metabolismo , Simulación del Acoplamiento Molecular
8.
J Ethnopharmacol ; 328: 117863, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38325670

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The JinChan YiShen TongLuo (JCYSTL) formula, a traditional Chinese medicine (TCM), has been used clinically for decades to treat diabetic nephropathy (DN). TCM believes that the core pathogenesis of DN is "kidney deficiency and collateral obstruction," and JCYSTL has the effect of "tonifying kidney and clearing collateral," thus alleviating the damage to kidney structure and function caused by diabetes. From the perspective of modern medicine, mitochondrial damage is an important factor in DN pathogenesis. Our study suggests that the regulation of mitophagy and mitochondrial function by JCYSTL may be one of the internal mechanisms underlying its good clinical efficacy. AIM OF THE STUDY: This study aimed to investigate the mechanisms underlying the renoprotective effects of JCYSTL. MATERIALS AND METHODS: Unilateral nephrectomy combined with low-dose streptozotocin intraperitoneally injected in a DN rat model and high glucose (HG) plus hypoxia-induced HK-2 cells were used to explore the effects of JCYSTL on the HIF-1α/mitophagy pathway, mitochondrial function and apoptosis. RESULTS: JCYSTL treatment significantly decreased albuminuria, serum creatinine, blood urea nitrogen, and uric acid levels and increased creatinine clearance levels in DN rats. In vitro, medicated serum containing JCYSTL formula increased mitochondrial membrane potential (MMP); improved activities of mitochondrial respiratory chain complexes I, III, and IV; decreased the apoptotic cell percentage and apoptotic protein Bax expression; and increased anti-apoptotic protein Bcl-2 expression in HG/hypoxia-induced HK-2 cells. The treatment group exhibited increased accumulation of PINK1, Parkin, and LC3-II and reduced P62 levels in HG/hypoxia-induced HK-2 cells, whereas in PINK1 knockdown HK-2 cells, JCYSTL did not improve the HG/hypoxia-induced changes in Parkin, LC3-II, and P62. When mitophagy was impaired by PINK1 knockdown, the inhibitory effect of JCYSTL on Bax and its promoting effect on MMP and Bcl-2 disappeared. The JCYSTL-treated group displayed significantly higher HIF-1α expression than the model group in vivo, which was comparable to the effects of FG-4592 in DN rats. PINK1 knockdown did not affect HIF-1α accumulation in JCYSTL-treated HK-2 cells exposed to HG/hypoxia. Both JCYSTL and FG-4592 ameliorated mitochondrial morphological abnormalities and reduced the mitochondrial respiratory chain complex activity in the renal tubules of DN rats. Mitochondrial apoptosis signals in DN rats, such as increased Bax and Caspase-3 expression and apoptosis ratio, were weakened by JCYSTL or FG-4592 administration. CONCLUSION: This study demonstrates that the JCYSTL formula activates PINK1/Parkin-mediated mitophagy by stabilizing HIF-1α to protect renal tubules from mitochondrial dysfunction and apoptosis in diabetic conditions, presenting a promising therapy for the treatment of DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Enfermedades Mitocondriales , Ratas , Animales , Nefropatías Diabéticas/patología , Proteína X Asociada a bcl-2 , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2 , Ubiquitina-Proteína Ligasas/metabolismo , Hipoxia , Proteínas Quinasas/metabolismo
9.
J Med Food ; 27(4): 330-338, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387002

RESUMEN

Gastric cancer is the fifth most common cancer globally and the third leading cause of cancer-related mortality. Existing treatment strategies for gastric cancer often present numerous side effects. Consequently, recent studies have shifted toward devising new treatments grounded in safer natural substances. α-Pinene, a natural terpene found in the essential oils of various plants, such as Lavender angustifolia and Satureja myrtifolia, displays antioxidant, antibiotic, and anticancer properties. Yet, its impact on gastric cancer remains unexplored. This research assessed the effects of α-pinene in vitro using a human gastric adenocarcinoma cell-line (AGS) human gastric cancer cells and in vivo via a xenograft mouse model. The survival rate of AGS cells treated with α-pinene was notably lower than that of the control group, as revealed by the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay. This decline in cell viability was linked to apoptosis, as verified by 4',6-diamidino-2-phenylindole and annexin V/propidium iodide staining. The α-pinene-treated group exhibited elevated cleaved-poly (ADP-ribose) polymerase and B cell lymphoma 2 (Bcl-2)-associated X (Bax) levels and reduced Bcl-2 levels compared with the control levels. Moreover, α-pinene triggered the activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 within the mitogen-activated protein kinase (MAPK) pathway. In the xenograft mouse model, α-pinene induced apoptosis through the MAPK pathway, devoid of toxicity. These findings position α-pinene as a promising natural therapeutic for gastric cancer.


Asunto(s)
Monoterpenos Bicíclicos , Neoplasias Gástricas , Humanos , Animales , Ratones , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Línea Celular Tumoral , Apoptosis , Quinasas MAP Reguladas por Señal Extracelular , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proliferación Celular
10.
J Ethnopharmacol ; 327: 117982, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38423411

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cynanchum otophyllum C.K.Schneid.PI.Wilson, commonly referred as ''Qingyangshen'' (QYS), is a traditional folk medicine from Yunnan, renowned for its efficacy in neurological and psychiatric disorders. Glycosides isolated from QYS have shown promise in alleviating epilepsy, however, mechanisms of action and specific molecular targets remain to be elucidated. AIM OF THE STUDY: The study aimed to evaluate the anticonvulsant effects of Qingyangshen glycosides M1 (M1), a C21 steroidal glycoside from QYS, on pentylenetetrazol (PTZ)-induced convulsions in zebrafish (Danio rerio), and its neuroprotective effect on Glutamate (Glu)-induced damage to PC12 cells, and importantly to identify its potential molecular targets. MATERIALS AND METHODS: To evaluate anticonvulsant activity of M1, 7 days-post-fertilization (7-dpf) animals were pretreated (by immersion) and then exposed to PTZ (10 mM) solution. Furthermore, Glu-induced PC12 cell damage was employed to investigate the neuroprotective and anti-apoptotic capacity. Cells were pretreated with various concentrations of M1 (0-10 µM) for 12 h and then co-treated with Glu (15 mM) for an additional 24 h. The cell viability, apoptosis rate and apoptosis-related proteins (p-PI3K, PI3K, Akt, p-Akt, CREB, p-CREB, BDNF, Bax and Bcl-2) were measured using CCK-8, annexin V/PI and Western blot assays. To model the expected interaction between M1 and candidate cannabinoid receptor type 1 (CB1R), ERK phosphorylation, molecular docking, and drug affinity responsive target stability (DARTS) techniques were employed. Finally, CB1R antagonist Rimonabant (Rim) was validated by co-administration in both zebrafish and cells to confirm the requirement of CB1R for M1 efficacy. RESULTS: At a concentration of 400 µM, M1 dramatically reversed PTZ-induced convulsive-like behaviors in zebrafish, as evidenced by a significant reduction in locomotor activity. In the context of Glu-induced cytotoxicity, M1 (10 µM) demonstrated a notable increase in cell viability and suppressed apoptosis through modulation of the Bax/Bcl-2 ratio and activation of the PI3K/Akt/CREB/BDNF signaling axis. These effects were facilitated through CB1R activation. In contrast, Rim dampened the beneficial activities of M1 as a cannabinoid agonist. CONCLUSIONS: These results demonstrated that M1 as a potential CB1R activator, exhibiting anticonvulsive effects in a PTZ-induced zebrafish model and neuroprotective properties via the PI3K/Akt/CREB/BDNF signaling axis in a Glu-induced PC12 cell injury model. Notably, the observed seizure relief attenuated by CB1R chemical antagonism.


Asunto(s)
Fármacos Neuroprotectores , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glicósidos/farmacología , Glicósidos/uso terapéutico , Glicósidos/química , Pez Cebra , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína X Asociada a bcl-2 , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Simulación del Acoplamiento Molecular , China , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Proteínas Reguladoras de la Apoptosis , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2 , Pentilenotetrazol/toxicidad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
11.
Phytother Res ; 38(5): 2249-2275, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38415799

RESUMEN

Cancer has a considerably higher fatality rate than other diseases globally and is one of the most lethal and profoundly disruptive ailments. The increasing incidence of cancer among humans is one of the greatest challenges in the field of healthcare. A significant factor in the initiation and progression of tumorigenesis is the dysregulation of physiological processes governing cell death, which results in the survival of cancerous cells. B-cell lymphoma 2 (Bcl-2) family members play important roles in several cancer-related processes. Drug research and development have identified various promising natural compounds that demonstrate potent anticancer effects by specifically targeting Bcl-2 family proteins and their associated signaling pathways. This comprehensive review highlights the substantial roles of Bcl-2 family proteins in regulating apoptosis, including the intricate signaling pathways governing the activity of these proteins, the impact of reactive oxygen species, and the crucial involvement of proteasome degradation and the stress response. Furthermore, this review discusses advances in the exploration and potential therapeutic applications of natural compounds and small molecules targeting Bcl-2 family proteins and thus provides substantial scientific information and therapeutic strategies for cancer management.


Asunto(s)
Apoptosis , Productos Biológicos , Neoplasias , Proteínas Proto-Oncogénicas c-bcl-2 , Humanos , Apoptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Neoplasias/tratamiento farmacológico , Productos Biológicos/farmacología , Transducción de Señal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Antineoplásicos/farmacología
12.
Asian Pac J Cancer Prev ; 25(2): 575-585, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38415544

RESUMEN

OBJECTIVE: Investigate the anti-cancerous potential of garlic-derived nanovesicles (GDNVs), exploring their cytotoxic effects on HeLa and PC-3 cell lines, and elucidate the underlying mechanisms, including apoptosis induction and inhibition of epithelial-mesenchymal transition (EMT). METHODS: GDNVs were isolated using differential centrifugation and ultracentrifugation. Characterization was performed through dynamic light scattering (DLS), field-emission scanning electron microscopy (FESEM), and Fourier-transform infrared spectroscopy (FTIR). Cytotoxicity assessments on HeLa and PC-3 cell lines using MTT assay. Apoptosis induction was evaluated through nuclear morphology changes and quantification of apoptotic cells using DAPI and PI/annexin V analysis. Western blot of apoptosis-related proteins (bcl-2, bax, caspase-3) was analysed. Anti-metastatic potential was assessed using wound healing assay and EMT transition inhibition. RESULTS: Garlic-derived nanovesicles (GDNVs), characterized by a size of 134.2 nm, demonstrated a substantial and dose- as well as time-dependent anti-proliferative impact on HeLa and PC-3 cell lines. The induction of apoptosis was unequivocally established through discernible modifications in nuclear morphology. The apoptotic cell count in HeLa and PC-3 cells increased by 42.4 ± 4.2% and 38.2 ± 3.2%, respectively. Comprehensive Western blot demonstrated alterations in the expression of key apoptotic regulators, namely bcl-2, bax, and caspase-3, providing robust evidence for the initiation of apoptosis. Furthermore, GDNVs exerted a significant inhibitory effect (p < 0.001) on the migratory potential of both HeLa and PC-3 cells. Moreover, there was a discernible association between GDNVs and the suppression of Epithelial-Mesenchymal Transition (EMT), emphasizing their role in impeding the metastatic potential of these cancer cell lines. CONCLUSION: This study establishes, for the first time, the anti-cancerous potential of GDNVs. The observed dose- and time-dependent anti-proliferative effects, selective cytotoxicity, apoptosis induction, and anti-migratory potential highlight GDNVs as a promising candidate for cancer treatment.


Asunto(s)
Ajo , Neoplasias del Cuello Uterino , Masculino , Femenino , Humanos , Caspasa 3/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Ajo/metabolismo , Próstata/patología , Proteína X Asociada a bcl-2 , Apoptosis , Células HeLa , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Reguladoras de la Apoptosis , Línea Celular Tumoral , Proliferación Celular
13.
Ecotoxicol Environ Saf ; 272: 116028, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38310824

RESUMEN

Extensive application of lead (Pb) brought about environmental pollution and toxic reactions of organisms. Selenium (Se) has the effect of antagonizing Pb poisoning in humans and animals. However, it is still unclear how Pb causes brainstem toxicity. In the present study, we wanted to investigate whether Se can alleviate Pb toxicity in chicken brainstems by reducing apoptosis. One hundred and eighty chickens were randomly divided into four groups, namely the control group, the Se group, the Pb group, and the Se/Pb group. Morphological examination, ultrastructural observation, relative mRNA expressions of genes on heat shock proteins (HSPs); selenoproteins; inflammatory cytokines; and apoptosis-related factors were investigated. The results showed that Pb exposure led to tissue damage and apoptosis in chicken brainstems. Furthermore, an atypical expression of HSPs (HSP27, HSP40, HSP60, HSP70, and HSP90); selenoprotein family glutathione peroxidase (GPx) 1, GPx2, GPx3, and GPx4), thioredoxin reductases (Txnrd) (Txnrd1, Txnrd2, and Txnrd3), dio selenoprotein famliy (diodothyronine deiodinases (Dio)1, Dio2, and Dio3), as well as other selenoproteins (selenoprotein (Sel)T, SelK, SelS, SelH, SelM, SelU, SelI, SelO, Selpb, selenoprotein n1 (Sepn1), Sepp1, Sepx1, Sepw1, 15-kDa selenoprotein (Sep15), and selenophosphate synthetases 2 (SPS2)); inflammatory cytokines (Interleukin 2 (IL-2), IL-4, IL-6, IL-12ß, IL-17, and Interferon-γ (IFN-γ)); and apoptosis-related genes (B-cell lymphoma-2 (Bcl-2), tumor protein 53 (p53), Bcl-2 Associated X (Bax), Cytochrome c (Cyt c), and Caspase-3) were identified. An inflammatory reaction and apoptosis were induced in chicken brainstems after exposure to Pb. Se alleviated the abnormal expression of HSPs, selenoproteins, inflammatory cytokines, and apoptosis in brainstem tissues of chickens treated with Pb. The results indicated that HSPs, selenoproteins, inflammatory, and apoptosis were involved in Se-resisted Pb poisoning. Overall, Se had resistance effect against Pb poisoning, and can be act as an antidote for Pb poisoning in animals.


Asunto(s)
Selenio , Humanos , Animales , Selenio/farmacología , Pollos/metabolismo , Citocinas/genética , Plomo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas Proto-Oncogénicas c-bcl-2
14.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38397018

RESUMEN

Among diverse cancers, pancreatic cancer is one of the most aggressive types due to inadequate diagnostic options and treatments available. Therefore, there is a necessity to use combination chemotherapy options to overcome the chemoresistance of pancreatic cancer cells. Plumbagin and xanthohumol, natural compounds isolated from the Plumbaginaceae family and Humulus lupulus, respectively, have been used to treat various cancers. In this study, we investigated the anticancer effects of a combination of plumbagin and xanthohumol on pancreatic cancer models, as well as the underlying mechanism. We have screened in vitro numerous plant-derived extracts and compounds and tested in vivo the most effective combination, plumbagin and xanthohumol, using a transgenic model of pancreatic cancer KPC (KrasLSL.G12D/+; p53R172H/+; PdxCretg/+). A significant synergistic anticancer activity of plumbagin and xanthohumol combinations on different pancreatic cancer cell lines was found. The combination treatment of plumbagin and xanthohumol influences the levels of B-cell lymphoma (BCL2), which are known to be associated with apoptosis in both cell lysates and tissues. More importantly, the survival of a transgenic mouse model of pancreatic cancer KPC treated with a combination of plumbagin and xanthohumol was significantly increased, and the effect on BCL2 levels has been confirmed. These results provide a foundation for a potential new treatment for pancreatic cancer based on plumbagin and xanthohumol combinations.


Asunto(s)
Naftoquinonas , Neoplasias Pancreáticas , Propiofenonas , Ratones , Animales , Flavonoides/farmacología , Flavonoides/uso terapéutico , Extractos Vegetales/farmacología , Propiofenonas/farmacología , Propiofenonas/uso terapéutico , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2
15.
Mol Biol Rep ; 51(1): 312, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374412

RESUMEN

BACKGROUND: The present study is analysisof the seeds of buckwheat (Fagopyrum sp.),member of the Polygonaceae family for isolation of rutin and its anticancer property againstOsteosarcoma celllines (SAOS2). The selected plant is traditionally used for diabetes and cancer. It has several biological properties such as antibacterial, antioxidant and anti-aging. PURPOSE: Thirty-five buckwheat cultivars were obtained from Nepal Agriculture Genetic Resources Centre (NAGRC) Khumaltar, Kathmandu, Nepal, and Kumrek Sikkim. These plant varieties are scientifically evaluated their biological properties. METHODS: Rutin wasfractionated from buckwheat seeds using methanol fraction and analysed for quality by HPLC method. The rutin fraction of the cultivar NGRC03731 a tartary buck wheat and standard rutin was used against Osteosarcoma cell lines (SAOS2) and human gingival fibroblast cells (hGFs) for anticancer activity. The cell viability using rutin fraction and standard rutin treated with SAOS2 cells were assessed by MTT assay. For further research, the best doses (IC-50: 20 g/ml) were applied. By using AO/EtBr dual staining, the effects of Rutin fraction on SAOS2 cell death were analysed. The scratch wound healing assay was used to analyse cell migration. Real-time PCR was used to analyse the pro-/anti-apoptotic gene expression. RESULTS: The seeds with the highest rutin content, NGRC03731 seeds, had 433 mg/100 g of rutin.The rutin fraction treatment and standard rutin significantly reduced cell viability in the MTT assay, and osteosarcoma cells were observed on sensitive to the IC-50 dose at a concentration of 20 g/ml after 24 h.The SAOS2 cells exposed to rutin fraction at 20 g/ml and standard rutin at 10 g/ml exhibited significant morphological alterations, cell shrinkage and decreased cell density, which indicate apoptotic cells.Rutin-fraction treated cells stained with acridine orange/ethidium bromide (AO/EtBr) dual staining cells turned yellow, orange, and red which indicatesto measure apoptosis.The anti-migration potential of rutin fraction, results prevented the migration of SAOS2 cancer cells.Rutin-fraction significantly increased the expression of pro-apoptotic proteinsBad, using real-time PCR analysis (mRNA for Bcl-2 family proteins) resulted Bcl-2's expression is negatively regulated. CONCLUSION: Osteosarcoma (SAOS2) cell lines' proliferation, migration, and ability to proliferate were reduced markedly by rutin fraction and it also causes apoptosis of Osteosarcoma cell lines (SAOS2).


Asunto(s)
Fagopyrum , Osteosarcoma , Humanos , Rutina/farmacología , Fagopyrum/genética , Línea Celular , Proteínas Proto-Oncogénicas c-bcl-2 , Osteosarcoma/tratamiento farmacológico
16.
Sci Rep ; 14(1): 1699, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242960

RESUMEN

In recent times, the methods used to evaluate gastric ulcer healing worldwide have been based on visual examinations and estimating ulcer dimensions in experimental animals. In this study, the protective effect of rhodanine and 2,4-thiazolidinediones scaffolds compared to esomeprazole was investigated in an ethanol model of stomach ulcers in rats. Pretreatment with experimental treatments or esomeprazole prevented the development of ethanol-induced gastric ulcers. The severity of the lesions and injuries was significantly lower than that of vehicle (10% Tween 80) treated rats. Significant and excellent results were obtained with the compound 6 group, with inhibition percentage and ulcer area values of 97.8% and 12.8 ± 1.1 mm2, respectively. Synthesized compounds 2, 7 and 8 exhibited inhibition percentages and ulcer areas of 94.3% and 31.2 ± 1.1 mm2, 91. 3% and 48.1 ± 0. 8 mm2, 89. 5% and 57. 6 ± 1. 2 mm2, and 89. 1% and 60.3 ± 0. 8 mm2, respectively. These biological outcomes are consistent with the docking studies in which Compounds 7 and 8 showed remarkable binding site affinities toward human H+/K+-ATPase α protein (ID: P20648), rat H+/K+-ATPase α protein (ID: P09626), and Na+/K+-ATPase crystal structure (PDB ID:2ZXE) with binding site energies of - 10.7, - 9.0, and - 10.4 (kcal/mol) and - 8.7, - 8.5, and - 8.0 (kcal/mol), respectively. These results indicate that these test samples were as effective as esomeprazole. Likewise, immunohistochemical staining of antiapoptotic (BCL2) and tumor suppressor (P53) proteins showed strong positive marks in the10% Tween 80- treated group, opposing the mild staining results for the esomeprazole-treated group. Similarly, the staining intensity of the group treated with Compounds 2-8 was variable for both proteins.


Asunto(s)
Antiulcerosos , Rodanina , Úlcera Gástrica , Tiazolidinedionas , Humanos , Ratas , Animales , Esomeprazol/uso terapéutico , Rodanina/metabolismo , Rodanina/farmacología , Rodanina/uso terapéutico , Proteína p53 Supresora de Tumor/metabolismo , Mucosa Gástrica/metabolismo , Antiulcerosos/uso terapéutico , Úlcera/patología , Polisorbatos/farmacología , Tiazolidinedionas/uso terapéutico , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/patología , Extractos Vegetales/farmacología , Etanol/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Adenosina Trifosfatasas/metabolismo
17.
PLoS One ; 19(1): e0290925, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38166086

RESUMEN

BACKGROUND: Articular cartilage and cartilage matrix degradation are key pathological changes occurring in the early stage of knee osteoarthritis (KOA). However, currently, there are limited strategies for early prevention and treatment of KOA. Duhuo Jisheng Decoction (DHJSD) is a formula quoted in Bei Ji Qian jin Yao Fang, which was compiled by Sun Simiao in the Tang Dynasty of China. As a complementary therapy, it is widely used to treat early-stage KOA in China; however, its mechanism has not been completely elucidated. OBJECTIVE: This study investigated the potential role of DHJSD in preventing cartilage degradation and the underlying mechanism. METHODS: A rat model of KOA model was established via the Hulth method. Subsequently, 25 rats were randomized into sham (saline), model control (saline), high-DHJSD (1.9g/mL of DHJSD), medium-DHJSD (1.2g/mL of DHJSD), and low-DHJSD groups (0.6g/mL of DHJSD). After 4 weeks of treatment, all rats were sacrificed and the severity of the cartilage degeneration was evaluated by a series of histological methods. The autophagosome was observed using transmission electron microscopy, and the related functional proteins were detected by the western blotting and real-time polymerase chain reaction. Next, the mechanism by which DHJSD improves knee cartilage degeneration was further clarified the in vitro by gene silencing technology combined with a series of functional experiments. The proteins levels of PTEN, Akt, p-Akt, mTOR, and p-mTOR, as well as the marker proteins of autophagy and apoptosis were determined. Zinc levels in chondrocytes were determined using inductively coupled plasma mass spectrometry. RESULTS: Histopathological staining revealed that DHJSD had a protective effect on the cartilage. DHJSD increased autophagosome synthesis and the expression of autophagy proteins LC3 and Beclin-1 in chondrocytes. Moreover, it reduced the phosphorylation levels of Akt and mTOR and the levels of zinc, MMP-13, Bax, and Bcl-2. Following PTEN silencing, this DHJSD-mediated reduction in Akt and mTOR phosphorylation and Bax, Bcl-2, and zinc levels were further decreased; in addition, DHJSD-mediated increase in LC3 and Beclin-1 levels was decreased. CONCLUSION: DHJSD inhibits the Akt/mTOR signaling pathway by targeting PTEN to promote autophagy in chondrocytes, which may help reduce MMP-13 production by regulating zinc levels in chondrocytes.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Ratas Sprague-Dawley , Proteína X Asociada a bcl-2/metabolismo , Beclina-1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Condrocitos/metabolismo , Osteoartritis de la Rodilla/patología , Cartílago Articular/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Autofagia , Homeostasis
18.
Phytomedicine ; 125: 155351, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232540

RESUMEN

BACKGROUND: Autophagy, a cellular process involving lysosomal self-digestion, plays a crucial role in recycling biomolecules and degrading dysfunctional proteins and damaged organelles. However, in non-small cell lung cancer (NSCLC), cancer cells can exploit autophagy to survive metabolic stress and develop resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), which reduce treatment efficacies. Currently, most studies have found that late-stage autophagy inhibitors can hinder EGFR-TKIs resistance, while research on early-stage autophagy inhibitors is still limited. PURPOSE: This study investigates the mechanism via which the Xie-Bai-San (XBS) formula enhances NSCLC cell sensitivity to gefitinib, revealing the relationship between XBS-induced cell death and the inhibition of autophagosome formation. METHODS: Cell viability was assessed using CCK-8 and EdU assays, lentivirus transfection was utilized to generate PC9 cells harboring the PIK3CA E545K mutation (referred to as PC9-M), autophagic flux was monitored using mCherry-GFP-LC3 adenovirus. Protein expression and colocalization were observed through immunofluorescence staining. The interaction between Bcl-2 and Beclin-1 in PC9-GR and PC9-M cells was determined via co-immunoprecipitation (Co-IP) assay, cell apoptosis was assessed by flow cytometry and PI staining, and overall survival analysis of lung adenocarcinoma patients was conducted using the TCGA database. In vivo experiments included a patient-derived xenograft (PDX) model with EGFR and PIK3CA mutations and subcutaneous mice xenografts of NSCLC cell lines (PC9 and PC9-GR). In addition, autophagic vesicles in mouse tumor tissues were observed via transmission electron microscopy analysis. RESULTS: XBS effectively inhibits the proliferation of gefitinib-resistant NSCLC cells and induces apoptosis both in vitro and in vivo. Mechanistically, XBS suppresses gefitinib-induced autophagic flux by inhibiting autophagy through the upregulation of p-mTOR and Bcl-2 and downregulation of Beclin-1. Additionally, XBS enhances the interaction between Bcl-2 and Beclin-1, and the overexpression of Beclin-1 promotes NSCLC cell proliferation and counteracts XBS-induced cell death, while XBS demonstrates minimal impact on autophagosome-lysosome fusion or lysosome function. CONCLUSION: This study reveals a novel role for the XBS formula in impeding autophagy initiation and demonstrates its potential as a candidate drug to counteract autophagy-induced treatment resistance in NSCLC.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Gefitinib/farmacología , Beclina-1 , Neoplasias Pulmonares/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Autofagosomas , Receptores ErbB/metabolismo , Quinazolinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Resistencia a Antineoplásicos , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2 , Línea Celular Tumoral
19.
J Ethnopharmacol ; 323: 117738, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38199336

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Periodontitis, a complex inflammatory disease, significantly affects people's lives. Traditional Chinese multi-herbal formulas, composed of various herbs, exhibit their therapeutic efficacy holistically. Kouqiangjie Formula (KQJF), comprising 12 herbs including Rhizoma smilacis glabrae, Polygonatum sibiricum Delar. ex Redoute, Taraxacum mongolicum Hand.-Mazz, etc., has been clinically proven to effectively treat periodontitis. However, the potential active substances conferring these effects and their mechanisms of action remain unclear. AIM OF THE STUDY: The current investigation endeavours to utilize Ultra Performance Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry (UPLC-Q-TOF-MS), network pharmacology, and in vivo animal experiment confirmation to explore the plausible bioactive compounds and operational mechanisms underpinning KQJF's therapeutic impact on periodontitis. MATERIALS AND METHODS: Using the UPLC-Q-TOF-MS technique, we deciphered the chemical constituents of KQJF. Network pharmacology was employed to earmark key bioactive elements, forecast principal targets, and operational pathways which were later substantiated through molecular docking. Experimental validations were carried out in a periodontitis animal model using a range of techniques, including micro-CT, H&E staining, qRT-PCR, and protein blotting procedures, providing comprehensive verification of our initial assumptions. RESULTS: Utilizing UPLC-Q-TOF-MS, we characterized 87 individual chemical constituents in KQJF. Network pharmacology revealed that 14 components, including senkyunolide A, glycycoumarin, licoflavonol, glycyrin, senkyunolide I, and senkyunolide H, form the key therapeutic basis of KQJF in targeting periodontitis. Significant targets and pathways were discerned as AKT1, MMP9, JUN, PTGS2, CASP3, TLR4, IL1ß, BCL2, PPARG, and pathways such as the TNF signaling pathway, NF-κB signaling pathway, osteoclast differentiation, and Wnt signaling pathway. Molecular docking demonstrated robust binding activity between these crucial targets and the key active ingredients. In vivo experimentation corroborated that, compared with the model group, KQJF significantly ameliorated symptoms and micro-CT imaging parameters of periodontitis in the rat model, down-regulating the expression of AKT1, MMP9, JUN, PTGS2, CASP3, TLR4, and IL1ß, while up-regulating the expression of BCL2 and PPARG. CONCLUSION: In summary, this study has pioneered a comprehensive exploration of the potential therapeutic constituents, targets, and mechanisms of KQJF for periodontitis treatment, adopting a synergistic strategy of "chemical component analysis-network pharmacology screening-in vivo animal experiment validation". This provides experimental evidence for the clinical application of KQJF and further in-depth research. Additionally, it presents an effective strategy for the research of other Chinese herbal formulations.


Asunto(s)
Medicamentos Herbarios Chinos , Metaloproteinasa 9 de la Matriz , Humanos , Animales , Ratas , Caspasa 3 , Ciclooxigenasa 2 , Simulación del Acoplamiento Molecular , PPAR gamma , Receptor Toll-Like 4 , Cromatografía de Gases y Espectrometría de Masas , Proteínas Proto-Oncogénicas c-bcl-2 , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
20.
J Ethnopharmacol ; 323: 117751, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38216102

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Qi-Ju-Di-Huang-Pill (QJDH pill) is a Chinese decoction. Although it is commonly used to treat eye conditions, such as diabetic retinopathy (DR), its exact mechanism of action is unknown. AIM OF THE STUDY: To investigate the specific mechanism by which QJDH pill slows the progression of diabetic retinopathy (DR) based on animal and cellular experiments. MATERIAL AND METHODS: The major components of QJDH pill were characterized by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLCMS/MS). C57BL/6J mice were randomly divided into five groups as follows: normal group (control group), model group (STZ group), low-dosage QJDH pill group (QJDH-L group), medium-dosage QJDH pill group (QJDH-M group) and high-dosage QJDH pill group (QJDH-H group). Changes in water intake, urination, food intake, and body mass were monitored weekly, while changes in blood glucose were monitored monthly. Fluorescein fundus angiography (FFA), optical coherence tomography angiography (OCTA), and optical coherence tomography (OCT) were utilized to analyze the changes in fundus imaging indications. Hematoxylin & eosin (H&E) and transmission electron microscopy (TEM) were employed to examine histopathologic and ultrastructural changes in retina. The levels of interleukin-6 (IL-6), interleukin-17 (IL-17), tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor (VEGF) in peripheral blood were detected using Enzyme-linked immunosorbent assay (ELISA). The mouse retina apoptotic cells were labeled with green fluorescence via terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (Tunel). The protein levels of Bcl-2-Associated X (Bax), B cell lymphoma 2 (Bcl-2), Caspase-3, PI3K, phosphorylated PI3K (p-PI3K), protein kinase B (AKT) and phosphorylated AKT (p-AKT) were quantified by Western blot (WB). The retinal pigment epithelium (RPE) cells were cultured and classified into five groups as follows: normal glucose group (NG group), high glucose group (HG group), high glucose + QJDH pill group (HG + QJDH group), high glucose + inhibitor group (HG + LY294002 group), and high glucose + inhibitor + QJDH pill group (HG + LY294002 + QJDH group). Cell viability and apoptosis were detected via Cell Counting Kit-8 (CCK8) and then analyzed by flow cytometry. RESULTS: In vivo experiments revealed that the QJDH pill effectively reduced blood glucose, symptoms of increased water intake, elevated urination, increased food intake and decreased body mass in DR mice. QJDH pill also slowed the development of a series of fundus imaging signs, such as retinal microangiomas, tortuous dilatation of blood vessels, decreased vascular density, and thinning of retinal thickness, downregulated IL-6, IL-17, TNF-α, and VEGF levels in peripheral blood, and inhibited retinal cell apoptosis by activating the PI3K/AKT signaling pathway. Moreover, in vitro experiments showed that high glucose environment inhibited RPE cell viability and activated RPE cell apoptosis pathway. In contrast, lyophilized powder of QJDH pill increased RPE cell viability, protected RPE cells from high glucose-induced damage, and decreased apoptosis of RPE cells by activating the pi3k pathway. CONCLUSION: QJDH pill induces hypoglycemic, anti-inflammatory effects, anti-VEGF and anti-retinal cell apoptosis by activating PI3K/AKT signaling pathway, and thus can protect the retina and slow the DR progression.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Retinopatía Diabética/patología , Interleucina-17 , Fosfatidilinositol 3-Quinasas/metabolismo , Interleucina-6 , Factor de Necrosis Tumoral alfa/farmacología , Glucemia , Qi , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-bcl-2 , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA